服务热线全国服务热线:

13668832366

您的位置:火狐官方下载苹果ios · 首页 > 产品展示

产品展示

发布时间:2024-01-19 来源:火狐官方下载苹果ios

电动汽车热管理技术探讨研究进展

  纯电动汽车的综合能效高、环境污染比较小,是我国优先发展的新能源汽车形式,随着纯电动汽车有关技术持续不断的发展,产业规模逐渐扩大。受制于动力电池的单位体积内的包含的能量与材料性质,纯电动汽车的续航能力成为制约其发展的核心问题,而整车热管理系统的需求与能耗逐步引起了行业的广泛关注。行驶的机动性使汽车面临的环境天气特征情况复杂多变,对于纯电动汽车而言,没有了传统燃油汽车的发动机热系统,汽车热系统在满足车室环境控制的同时,还需要满足电池/电机/电控温度控制、换热器除霜、车窗玻璃除雾等需求,热管理技术是汽车驾乘安全与舒适的重要保证,已成为电动汽车发展的核心关键技术。

  乘员舱是汽车行驶过程驾驶人员所处的环境空间,为保证驾驶人员舒适的驾驶环境,乘员舱热管理需要控制车室内环境的温度、湿度、送风温度等。乘员舱在不一样的情况下的热管理需求如表 1 所示。

  动力电池温控是保障电动汽车高效安全运作的重要前提,在温度过高时将引发漏液、自燃等现象,影响驾驶安全; 温度过低时,电池充放电能力均会有一定的衰减。由于单位体积内的包含的能量高、轻量化,锂电池成为电动汽车应用最广泛的动力电池。锂电池温控需求和根据文献所估算出的不同状况下电池热负荷如表 2 所示。随着动力电池单位体积内的包含的能量的逐步提升、工作环境温区范围的拓展以及快充速度的攀高,动力电池温控在热管理系统中的重要性也更突出,不仅需要满足多种路况、不同充放电模式等车辆使用工况下的温控负荷变化,电池组间温度场均匀性与热失控防控,还需要满足严寒、高热高湿地区、夏热冬冷地区等不同环境工况下的所有温控需求。

  电机与电控是电动汽车关键的能量输出环节,电机工作过程中由于线圈电阻发热、机械摩擦生热等原因会产生大量热量,温度过高导致电机内部短路、磁体的不可逆退磁等问题。根据当前电动汽车市场不同车型电机配置情况,乘用车电机与电控温控需求和考虑电机效率和电机功率情况下的电机发热功率如表 3 所示。随着电动汽车的普及以及应用场景的增多,汽车动力需求不断的提高,电动汽车电机需要更高的功率、扭矩以及转速,同时也代表着更高的发热量,因此电机系统的热管理需求慢慢地提高。

  整车热管理是电动汽车发展的核心技术之一,涉及乘员舱温湿环境调控、动力系统温控、玻璃防雾除雾等多目标管理。根据热管理系统架构与集成化程度,将电动汽车热管理的发展归纳为三个阶段,如图 1 所示。从单冷配合电加热到热泵配合电辅热再到宽温区热泵与整车热管理逐步耦合,电动汽车整车热管理技术逐渐朝着高度集成化、智能化的方向发展,并且在宽温区、极端条件下的环境适应性能力逐渐提升。

  在电动汽车产业化起步阶段,基本是以电池、电机等动力系统的替代为核心技术发展起来的,车室空调、车窗除雾、动力部件温控等辅助系统是在传统燃油汽车热管理技术基础上逐步改进而来的。纯电动汽车空调与燃油汽车空调都是通过蒸气压缩循环来实现制冷功能,两者的区别是燃油汽车空调压缩机由发动机通过皮带间接驱动,而纯电动车则直接用电驱动压缩机来驱动制冷循环。燃油汽车冬季制热时直接利用发动机余热对乘员舱进行供热,不需要额外的热源,而纯电动车的电机余热不足以满足冬季制热的需求,因此冬季制热是纯电动汽车要解决的问题。正温度系数加热器( positivetemperature coefficient,PTC) 由 PTC 陶瓷发热元件与铝管组成,具有热阻小、传热效率高的优点,并且在燃油汽车的车身基础上改动较小,因此早期的电动汽车采用蒸气压缩制冷循环制冷加 PTC 制热的方式来实现乘员舱的热管理,例如图 2 所示的早期三菱公司的 i-MIEV 电动汽车。与燃油汽车由燃料提供能量不同,电动汽车由动力电池提供能量。电动汽车正常运行时,动力电池放电产热,温度上升,需要对电池进行降温。电池冷却的方法主要有空气冷却、液体冷却、相变材料冷却、热管冷却,由于空气冷却结构相对比较简单、成本低、便于维护,在早期的电动车上得到普遍应用。这一阶段的热管理主要形式是各个独立的子系统分别满足热管理的需求。

  在实际使用的过程中电动汽车冬季供热能耗需求较高,从热力学角度来说 PTC 制热的 COP 始终小于 1,使得 PTC 供热耗电量较高,能源利用率低,严重制约了电动汽车的行驶里程。而热泵技术利用蒸气压缩循环将环境中的低品位热量进行利用,制热时的理论 COP 大于 1,因此使用热泵系统代替 PTC 能增加电动汽车制热工况下的续航能力。图 3 所示为宝马 i3 车型采用热泵系统来实现冬季制热。此外,一汽奔腾与红旗、上汽荣威等也在部分车型上采用了热泵系统。然而在低温度的环境下,传统热泵系统制热量衰减严重,不足以满足电动汽车低温度的环境制热需求,需要额外的加热器辅助加热,因此热泵加 PTC 图 3 宝马 i3 电动汽车热泵系统 Fig.3 Heat pump of BMW-i3 辅热的制热方式成为电动汽车冬季低温环境下乘员舱制热的主要方式。随着动力电池容量与功率的逐步提升,动力电池运行过程的热负荷也逐渐增大,传统的空冷结构不足以满足动力电池的温控需求,因此液冷成为当前电池温控的主要方式。并且,由于人体所需的舒适温度和动力电池正常工作所处的温度相近,能够最终靠在乘员舱热泵系统中并联换热器的方式来分别满足乘员舱与动力电池制冷的需求。通过换热器以及二次冷却间接带走动力电池的热量,电动汽车整车热管理系统集成化程度有所提高。虽然集成化程度有所提升,但这一阶段的热管理系统只对电池制冷与乘员舱制冷进行了简单整合,电池、电机余热未得到一定效果利用。

  传统热泵空调在高寒环境下制热效率低、制热量不足,制约了电动汽车的应用场景。因此,一系列提升热泵空调低温工况下性能的方法得以开发应用。通过合理增加二次换热回路,在对动力电池与电机系统来进行冷却的同时,对其余热进行回收利用,以提高电动汽车在低温工况下的制热量。实验根据结果得出,余热回收式热泵空调与传统热泵空调相比,制热量明显提升。各热管理子系统耦合程度更深的余热回收式热泵以及集成化程度更高的整车热管理系统在特斯拉Model Y、大众 ID4.CROZZ 等车型上已得以应用( 图 4) 。但当环境和温度更低, 且余热回收量更少时,仅通过余热回收依然不足以满足低温度的环境下的制热量需求,仍需使用 PTC 加热器来弥补上面讲述的情况下制热量的不足。但随着电车整车热管理集成程度的逐渐提升,能够最终靠合理的增大电机发热量的方式来增加余热的回收量,来提升热泵系统的制热量与 COP,避免了 PTC 加热器的使用,在逐步降低热管理系统空间占用率的同时满足电动汽车在低温度的环境下的制热需求。除电池、电机系统余热回收利用外,回风利用也是降低低温工况下热管理系统能耗的方式。研究根据结果得出,低温度的环境下,合理的回风利用措施能够在避免车窗起雾、结霜的同时使电动汽车所需制热量下降 46% ~ 62%,最大能够降低约 40%的制热能耗。日本电装也开发了相应的双层回风 /新风结构,能够在防起雾的同时降低 30%由通风引起的热损失。这一阶段电动汽车热管理在极端条件下的环境适应能力逐渐提升,并朝着集成化、绿色化的方向发展。

  为进一步提高电池高功率情况下的热管理效率, 降低热管理复杂程度,将制冷剂直接送入电池组内部进行换热的直冷直热式电池温控方式也是目前的一个技术方案,一种电池包与制冷剂直接换热的热管理构型如图 5 所示。直冷技术可提升换热效率与换热量,使电池里面获得更均匀的温度分布,减少二次回路的同时增大系统余热回收量,进而提高电池温控性能。但由于电池与制冷剂直接换热技术一定要通过热泵系统的工作提高冷热量,一方面电池温控受限于热泵空调系统的启停,并对制冷剂环路的性能有一定影响,另一方面也限制了过渡季节的自然冷源利用,因此该技术仍需通进一步的研究改进与应用评估。

  电动汽车热管理系统由多个部件组成,最重要的包含电动压缩机、电子阀、换热器、各种管路以及储液器等主要部件。其中,压缩机、电子阀和换热器是热泵系统最核心的部件。随着电动汽车轻量化的需求不断的提高,系统集成化程度不断深入,电动汽车热管理部件也在向轻量化、集成化、模块化的方向持续不断的发展。为提高电动汽车在极端条件下的适用性,能够在极端条件下正常工作并满足汽车热管理性能需求的部件也在相应的开发应用。

  压缩机是空调系统的心脏,与燃油车不同,电动汽车空调系统由独立的电动压缩机直接驱动,为满足应用场景的需要,电动汽车压缩机还一定要满足轻量化、高效化和可靠性高的需求。涡旋式压缩机体积小、重量轻、效率高,因此成为目前车用电动压缩机的主要形式。在低温度的环境下,压缩机吸气压力较低,使吸气密度与质量流量较低,同时还使压缩机运行压力比增大,等熵效率降低,造成冬季制热效率低、制热量不足的问题。此外,压比过大还会造成压缩机排气温度过高,导致润滑油碳化失效,极度影响压缩机运行的安全。因此就需要增强压缩机在低温度的环境下的制热能力,同时降低压缩机排温。涡旋压缩机补气结构与系统原理如图 6 所示,中间补气能够引入额外的中间压力的低温制冷剂进入压缩机,降低压缩机的排气温度和比功。因此适用于电动汽车的中间补气式压缩机成为提升电动压缩机低温工况下性能的重要技术方案。补气式压缩机设计的研究内容大多分布在在补气口开口位置、数量、几何结构等方向上,相关研究内容如表 4 所示。Han Xinxin 等研制了一种适用于电动客车的喷射补气式热泵系统, 测试根据结果得出,在-20 ℃ /20 ℃ 测试工况下,喷射补气式热泵系统的 COP 为 1. 60,比无喷射补气热泵系统的 COP 提高 14. 5%。除研究工作外,纯电动客车大温差高能效热泵空调已在实车上得以验证,上海松芝、湖南华强等电动客车空调企业均推出了喷射补气准二级压缩的低环温热泵空调系统。

  油循环率对电动压缩机性能的影响也十分显著,系统的油循环率是通过压缩机内置的油分离 器来控制实现的。油循环率在约 5%时,系统能达到最佳性能,不同进油口结构对油分离效率影响较大,并且当压缩机转速在某个区间范围内时,油分离效率将达到最佳。因此,在对电动压缩机进行设计时需要仔细考虑油分离器与电动压缩机的适配性。

  换热器是汽车热管理系统重要部件,换热能力对 系统整体效率影响较大,并且换热器空间占用率较高,因此电动汽车换热器朝着高效化、结构紧密相连化发展。结构紧凑、传热效率高的微通道换热器成为电动汽车换热器的首选,并大范围的应用于电动汽车热管理系统。微通道换热器存在流量分配不均导致换热器表面温度分布不均以及由于结霜引起换热能力变弱的问题。提升微通道换热器性能的重点是合理的流量分配的方法与除霜技术。关于流量分配的相关研究如表 5 所示。较低的温度、较小的风量以及较大的湿度是引起换热器结霜的重要的因素。A. J. Mahvi 等的研究根据结果得出,提高换热器表面的疏水性能够延迟结霜,保持比较高的传热效率。除了对换热器表明上进行处理以防止换热器结霜之外,合理的除霜策略也必不可少。换热器除霜策略最重要的包含热气旁通除霜、逆循环除霜等。热气旁通除霜会导致车辆冬季制热性能不足,除霜速度缓慢。逆循环除霜的方式没办法保证乘员舱内温度的稳定。有学者提出将逆循环除霜与热气旁通除霜相结合的复合除霜方式,能够在大大降低能耗的同时,保证乘员舱温度的稳定性。

  随着电动汽车热管理各子系统之间的耦合程度逐渐加深,需要结构更紧凑、换热能力更强的换热器来完成子系统之间的热量传递,因此板式换热器成为例如电子冷却器等换热器的形式首选。板式换热器由带有波纹的板片叠加而成,常见的波纹形式有人字波纹、球形波纹、平直波纹等,如图 7 所示。为满足更高的换热量需求,提高电池冷却器传热效率,能够最终靠合理设计换热器内部结构,增加入口效应,提高湍流度等方式使其达到更高的传热系数。

  回热器的使用可提升制冷剂在膨胀阀进口的过冷度,是提升汽车空调性能的一种优化方案。套管式换热器具有结构相对比较简单、压降小的特点,能够很好的满足汽车空调回热器的需求。应用于汽车空调的回热器主要是同轴套管式回热器,为增强换热能力,通常会在换热器内部增加肋片,不同肋片的同轴套管式回热器结构如图 8 所示。受制于车身空间限制,直管式套管换热器长度会受到限制,导致回热量不足。如图 9 所示的螺旋管套管式回热器能够增大回热量,但会使制冷剂压降有所上升。随着系统集成程度的提高,回热器通常会集成到管路之中,或是内置于气液分离器之中,降低空间占用率的同时减少有害过热。

  热管理系统耦合程度的加深提高了热管理的效 率,但新增的阀件与管路使系统更复杂。为简化管路流程,降低热管理系统空间占用率,热管理系统部件在朝着集成化的方向发展。电动汽车热管理系统包括多个载冷剂回路,这些回路又各自包括膨胀水壶、电磁阀等部件,这些部件通过管道连接,结构较为复杂,并且占用大量的空间。为降低热管理系统载冷剂回路的复杂程度,特斯拉在 Model Y 车型上首次采用了八通阀,以代替传统系统中的冗余管路和阀件,如图 10 所示,这是一个拥有 8 个进出口通路的阀组,能够最终靠切换来实现不同管路组合的联通,大幅度降低系统管路复杂程度的同时满足热管理系统多种工作模式的切换。小鹏汽车通过如图 11 所示的集成式水壶结构,将原本多个回路的水壶及相应的阀件、水泵集成到一个水壶之上,大幅度降低载冷剂回路的复杂程度,降低空间占用率,同时降低管路中的压降与热损失,提高系统的综合效率。

  除载冷剂回路外,制冷剂回路集成化程度的提高也能够降低热管理系统的复杂程度,比亚迪提出一种阀组集成模块如图 12 所示,包括多个电磁膨胀阀与通断阀,并将板式换热器集成到阀组之上,能完成热管理系统多种运行模式的切换,降低管路数量的同时减少制冷剂充注量。

  为进一步降低热管理系统空间占用率,提高系统的集成程度,进一步将控制器、板式换热器、压缩机等主要部件集成为一体,同时将原本热管理系统众多的管路功能通过基板来实现的理念也在电动汽车热管理行业开始慢慢地发展,这样的高度集成可以使管路的数量大幅度降低有利于热管理系统的智能化控制与轻量化的发展。当然,对于系统的维护而言,集成式系统也带来了维护与检测成本提高的问题,需要同时解决集成件中零部件的标准化和可替换问题。

  虽然当下电动汽车热管理系统与早期相比,在集成化与节能高效等方面已经取得了较大发展,但在制冷剂替代、全气候宽温区热泵系统开发、智能化控制等方面仍面临较大挑战。

  2016 年《基加利修正案》将氢氟碳化物纳入管控范围,车用空调制冷剂替代成为行业的共性痛点。关于潜在替代制冷剂的研究应用大多分布在于 R1234yf、 CO2 与 R290,上述制冷剂主要物理性质如表 6 所示。R1234yf 与传统制冷剂 R134a 热力学性能相近,容易 实现制冷剂的替换,但价格相比来说较高。R290 和 CO2作为天然环保制冷剂,具有价格相对低廉的优势。CO2无毒、不可燃、具有优良的耐热性,并且在超临界状态下放热时具有较大的温度滑移,因此具备优秀能力的制热性能。R290 热泵系统具备优秀能力的制冷、制热性能,但由于 R290 是易燃性制冷剂,解决 R290 可燃性带来的安全风险隐患是实现 R290 热泵系统在电动汽车上应用的关键问题。

  R1234yf 与 R134a 制冷剂热力性质十分接近,可以在 R134a 热管理系统上直接用 R1234yf 进行替 换,但系统性能会略有降低。C. Zilio 等的研究根据结果得出,诸如优化膨胀阀和使用变排量压缩机等较小的改进可以使 R1234yf 制冷剂系统获得相似的系统性能。R1234yf 具有弱可燃性,能够最终靠增加二次回路的方式来降低燃烧的风险。由于专利以及合成技术等原因,R1234yf 较高的价格成为制约其推广应用的阻碍。

  作为价格低、环境友好的自然制冷剂,目前 CO2热泵系统已开始在实车上应用,但仍存在夏季制冷量不足、极寒条件下制热效率低等问题,研究领域的工作目标主要是逐步提升 CO2热泵系统的性能,尤其是高温环境下制冷性能的提升。东等开发的适用于低温度的环境的 CO2热泵系统如图 13( a) 所示,该 CO2热泵系统在膨胀阀与室内换热器之间增加了一个换热器。测试根据结果得出,该系统在低温度的环境下启动时制热量可达 3. 6 kW,COP 为 3. 15。中间冷却式热泵系统能够明显提升热泵系统性能。Chen Yiyu 等开发的中间冷却式跨临界 CO2图 13 CO2 热泵系统原理 Fig.13 Principle of CO2heat pump system 热泵如图 13( b) 所示,制冷模式时,压缩机中间冷却热量通过中间冷却器排出车外; 制热模式时,中间冷却的热量通过室内蒸发器得以回收利用,测试根据结果得出,该系统在制冷、制热工况下性能皆有所提升。Zou Huiming 等提出利用喷射器替代节流阀,其系统 流程如图 13( c) 所示,计算根据结果得出喷射器的使用可提升压缩机的进口压力,降低压缩机的工作压比,提高 CO2热泵系统综合性能。虽然 CO2热泵系统的制热性能优异,但由于跨临界 CO2热泵循环工作所承受的压力较高,对系统的安全性与可靠性提出了更高的要求。

  R290 作为另一种潜在的可替代环保自然制冷剂,具备优秀能力的制冷、制热性能。Liu Cichong 等对 R290 热泵系统在低温度的环境下的制热性能进行了研究,在-10 ℃工况下,与传统的 R134a 制冷剂系统相比,R290 热泵的制热量与 COP 分 别 提 升 55% 和 12. 3%。为提高 R290 系统的安全性,黄广燕等搭建了 R290 热泵系统及其二次换热回路,如图 14 所 示,根据结果得出在-25 ℃的环境和温度下,R290 系统的制热 COP 能达到 2. 16,具备优秀能力的制热性能。但 R290 的可燃性严重限制了其推广应用。奥特佳公司提出了以 R290 为制冷剂的二次回路电动汽车热泵技术及其产品,如图 15 所示,将可燃的 R290 回路置于前舱,通过不可燃的二次回路间接对车舱内的环境来控制,实现热管理系统模块化设计的同时,最大限度减少制冷剂的充注量。

  另一方面,混合制冷剂可以克服纯自然制冷剂自身物性的局限性,也是未来新型制冷剂热泵系统的发展趋势之一。Yu Binbin 等对 CO2 /R41 混合制冷 剂应用于汽车热泵系统的性能进行了研究。测试根据结果得出,在最佳配比下,该混合制冷剂的系统性能与纯 CO2制冷剂相比有所提升。理化所团队也对 CO2/ R290 混合制冷剂进行了研究,初步研究根据结果得出, CO2/R290 混合制冷剂的制冷制热性能与混合比紧 密相关,通过混合 R290 和 CO2,大大降低了 R290 的 可燃性和系统的运行压力,关于该混合制冷剂的最佳 混合比与系统特性还有待未来进行深入研究。

  电动汽车热管理系统的高效智能化与乘员舱热舒适性成为提高出行品质的关键保证。根据汽车本身行驶状况的不同,电动汽车各系统的热负荷会出现动态波动,并且电动汽车热系统耦合程度不断加深,对热管理系统的控制提出了更高的要求。因此智能化、一体化、精细化的控制方式将会是降低整车能耗、提升舒适性的控制方式。

  热泵系统传统的控制方式是通过开关控制、PID 控制等方法分别对各个独立的热管理对象与热管理执行机构来控制,根据设定值与实际值的偏差,通过调节压缩转速、膨胀阀开度、电加热器功率、循环泵功率、电子风扇风量等参数,使各控制参数维持在设定的范围。但随着热管理一体化程度的加深,PID 控制在处理复杂的动态控制过程中容易使系统出现超调或是震荡等问题,造成能耗升高的同时降低驾驶的舒适性。多支路耦合的复杂热泵系统的操控方法是当前电动汽车热管理系统控制技术的研究重点。对结构复杂的带余热回收的中间补气热泵系统,补气支路流量与主路流量对系统性能有重要影响,韩欣欣对中间补气压力等关键参数以及主路与支路流量分配特性及其控制开展了研究,得到流量分配比与压力比的关系,并发现存在最佳流量配比使系统性能达到最优。对于 CO2热泵气冷器侧温度压力多变的特点,Hu Bin 等成功将极值搜索操控方法( ESC 操控方法) 应用于跨临界CO2热泵系统最优排气压力的控制上,增加扰动的梯度搜索寻优操控方法可以实现复杂系统的精细化控制,通过对当前排气压力施加小幅度的扰动信号,同时监测系统性能的波动情况,通过数学分析寻找系统性能最佳的状态点,进而确定系统所需控制的最佳排气压力。除 ESC 控制方案外,基于模型预测的 MPC 操控方法无论是对局部系统还是全局系统的寻优控制上也都可以在一定程度上完成快速稳定的控制,MPC 操控方法也在CO2热泵系统控制上得以应用,但 MPC 方法过于依赖模型,需要大量的仿真和实测数据对模型进行支持,随着未来信息交互技术的发展与模型精确程度提高,MPC 操控方法将达到更高的精确性。

  为保证驾驶人员的热舒适性,需要将乘员舱温湿度控制在合理的波动范围以内。对于车内热湿环境控制,常规的控制方式是在前挡风玻璃防雾、保证车辆运行安全的前提下,针对车内的温湿度控制需求, 通过调节送风量以及送风温度来对车内环境来控制。张桂英基于对双蒸发器的电动汽车热泵系统的研究,提出了基于不同支路膨胀阀动态调节特性的双蒸发器控制思路,并利用比例回风形成连续风幕来防止车窗玻璃结雾。针对常规热泵空调低温度的环境下乘员舱供热不足的问题,刘稷轩通过玻璃表面结雾特性研究,以最大回风比为目标,通过电动风阀的调节来实现最大回风利用的控制,以此来降低电动汽车热泵系统的整体能耗。进一步,为更好地对车内热湿环境进行调控并降低热泵系统能耗,理化所团队还提出了利用侧玻璃强化凝结调控车内湿度以此来降低前挡玻璃除雾能耗的节能思路,并对不同涂层处理的侧玻璃凝结特性开展了理论与实验研究,研究表明,侧玻璃凝结具有一定的除湿潜力,但在涂层的覆盖形式与耐久性方面还需进一步开展研究。

  在整车热管理层面,乘员舱热管理不仅包括空调送风这一传统方式,座椅加热等新型方式也得到了研究和推广应用。除了热管理主动调节方法以外,合理的车身保温与结构设计与材料选择也能降低车内环境的波动性,提高热舒适性。此外,长时间舒适的驾驶环境容易令驾驶人员产生疲乏,影响驾驶的安全性,智能控制管理系统通过吹风或其他刺激手段提高驾驶人员精神集中度的相关研究也在进行中。

  电动汽车热管理系统从传统的燃油汽车空调系统改进而来,并慢慢地过渡到适用于电动汽车的热泵系统。与燃油汽车不同的是,电动汽车热管理对象还包括电池系统与电机系统。通过三电耦合,电动汽车整车热管理系统的耦合程度以及部件的集成化程度不断提升。

  为提高电动汽车在多环境下的适用性,进一步提升电动汽车的续航能力,需要开发适应宽温区、极端条件下的热泵系统。

  随着出行品质的需求日益提升,需要提高热管理对人体热舒适性的关注度,执行以人为本的、智能化的汽车热管理技术和控制策略。

  面对更加严苛的环境保护需求,应该着重关注环保制冷剂的替代性研究,并通过余热回收、喷射补气等技术开发来完成绿色节能高效的整车热管理系统的构建。

  创新的半导体器件和系统方案应对越来越多支持电动汽车、ADAS和无人驾驶汽车的新兴应用 推动高能效创新的安森美半导体将于7月3日至5日在上海举办的第13届上海国际节能与新能源汽车产业博览会(EV China 2019),展示应用于汽车功能电子化、先进驾驶辅助系统(ADAS)、汽车照明和车身电子的方案和技术。 汽车领域正迅速迈向采用纯电动汽车(EV),并采用将最终实现全自动驾驶汽车的精密ADAS。安森美半导体在这一领域处于技术前沿,持续开发和推出器件及集成的系统方案,以使强固、可靠并全部符合最新汽车标准的高性能电子成分遍及整个车辆。 安森美半导体将在其展位上作演示,使观众进一步探索和看到这些演示的应用的可能性。在汽车功能电子

  继全国几个城市推广新能源牌照之后,北京也开始推行 电动汽车 牌照。最近各个电动汽车车友群里关于电动汽车换牌照的讨论如火如荼。有车友热情高涨,有车友疑惑鄙视。有一部分车友已经换了绿牌,在群里晒靓号。换绿牌无非是图个新鲜、占个好号。今天,笔者就跟大家评评我迟迟不换的理由。   1、 程序复杂 ① 将车下违章全部消除。 ② 如果涉及到贷款抵押大绿本的,应先想办法拿到大绿本,换牌时要用。 ③ 非京籍人员还应该持有在有效期内的居住证。 ④ 到相关网站或手机APP注册,登录,选号,预约换牌时间和地点。 ⑤ 按照约定时间到约定的车管所(站)办理验车、拆旧牌、换牌业务。只有4家车管所可以立等1小时取牌。其它需要等待几天,邮寄到家。 ⑥ 安上电动牌

  据外媒报道,印度理工学院(IIT-BHU)的研究人员开发出一种 电动汽车 (EV)充电的新技术,其成本约为当前车载充电器技术的一半,可明显降低两轮和四轮电动汽车的价格。据研究人员称,IIT-BHU目前已完成实验室规模的开发,并且在进行升级和商业化。该技术由来自瓦拉纳西IIT(BHU)、IIT Guwahati和IIT Bhubaneshwar分校的专家联合开发。 电气工程系副教授兼首席项目研究员Rajeev Kumar Singh博士表示:“电动汽车是传统IC发动机的最佳替代品。但由于缺乏高功率车外充电基础设施,汽车制造商不得不将车载充电器整合到车辆本身中,使车主能够最终靠插座给车辆充电,但这也使得电动汽车价格昂贵。” Ra

  电动车 初创公司 法拉第 未来(Faraday Future,即 乐视 FF)在拉斯维加斯正式对外发布首款量产电动车FF91。价格这一块,乐视FF并没有在现场公布,但官网信息数据显示,中国大陆地区用户的预订金额为5万元。 FF91的参数标准也公布了:车长5.25米,轴距3.2米,车宽2.006米。   性能上看,FF91一次充电最大续航为378英里(EPA)和700公里(NEDC),最大马力1050马力(最大功率783千瓦), 0-60英里时速加速时间为2.44秒。 值得一提的是,乐视CEO 贾跃亭 在演示无人驾驶的环节,出了一些意外,自动启动没有成功,自动停车成功了。 贾跃亭现场用英文演讲,介绍FF91和乐视的造车梦想。贾跃亭

  引言 在我慢慢长大的过程中,邮件是用一辆 Grumman Kurbwatt 电动厢式货车投递的。如今,Kurbwatt 已不复存在,邮件由工作人员徒步投递。也许这是两党合作的少有范例,因为无论是不是“绿色”信徒,均将此视为一项成功。然而,Kurbwatt 提醒我们,电动汽车始终无处不在,即使你并没注意到它。事实上,电动汽车的提法可以一直追溯到 19 世纪早期。首批电动汽车使用不可再充电的电池,而伴随着每一次电池改进,都一定会出现更加实用的电动汽车版本。实际上,100 多年前,比利时人制造的电动赛车 La Jamais Contente 就创造了陆地时速 68 mph 的世界纪录 1 。电动汽车在 20 世纪早期很流行,因为与汽油燃

  交付押金后,就能把电动汽车开回家,退车时押金还能全额退还。这种电动汽车租赁服务开始在我市出现,然而一个企业推出“零租金”出租纯电动物流汽车服务两个月后,仅租出一台车。 试水“零租金”租赁 昨日,记者在位于市体育馆的一家新能源汽车销售服务有限公司看到,该公司租赁的纯电动物流汽车为瑞驰牌纯电动厢式运输车(车型编号:CRC5021XXY-LBEV),外形和普通面包车一样,标注“家庭用电6小时可充满,充满可行驶180公里”。该款车享受国家和地方新能源补贴后的价格为8万元。                    公司工作人员向客户介绍车型和租赁政策 为了享受新能源汽车补贴,去年年底,该公司购入12辆瑞驰牌纯电动物流汽车,在

  选了好久的话题,这次想初步总结下电池包的热管理相关知识点,对BMS来讲,其实属于周边领域内容;目前BMS硬件与热管理相关的好像只是控制水泵与采集水管温度,更多设计内容都在软件以及模组结构、热仿真部门。(图片来自互联网) 这次主要目标是了解电动汽车上电池包的加热与冷却的代表方案。冷却计划方案: 风冷 风冷又分为自然冷却与强制风冷。自然冷却就是将电池的热量传递到周围的空气中,不施加额外的对流手段,某一些程度上来讲就是“听天由命”;基本上早期的电动汽车都是这种方案,像初代的秦、唐等电池包(下图来自互联网);当然布局上还是要考虑怎么把内部电芯的热给导出来。 强制风冷就是加了风扇,制造一个对流的工况,空气会以一定的流速

  一种快速直流充电器正登陆美国电动汽车市场,这种充电器能够在20分钟内为电动汽车充满80%的电量。消费者未来有望以低廉的价格在数分钟内完成电动汽车充电,而电能储存则是实现这一目标的关键点。     快速充电器无疑为纯电动汽车的发展提供了便利,但电动汽车的充电高峰时段有很大的可能性给电网带来非常大压力,如果电动车充电业务选择使用高电价的峰时电充电,一天的费用将高达数百甚至数千美元。     因此,发展快速直流充电站,必须避免峰时充电的问题,因为电动汽车此时在快速站充电将耗电50千瓦,是“慢速”充电站耗电量的15倍。     事实上,自直流充电器计划推出以来,电池生产厂商就致力于开发对电网压力较小的电池产品。例如,美国电动汽

  充电电压的模糊PI控制仿真研究

  车载充电(OBC)平台用户手册(ONSEMI半导体)

  电池充放电simulink仿真模型

  蓄电池无损伤快充方案

  有奖直播 是德科技 InfiniiMax4.0系列高带宽示波器探头新品发布

  MPS电机研究院 让电机更听话的秘密! 第一站:电机应用知识大考!跟帖赢好礼~

  ADI世健工业嘉年华——深度体验:ADI伺服电机控制方案

  解锁【W5500-EVB-Pico】,探秘以太网底层,得捷电子Follow me第4期来袭!

  Cooper™ 开发者平台为工业应用、AIoT、智能视频分析和前端 AI 计算应用提供高能效解决方案。美国加利福尼亚州圣克拉拉市,2024年1月10 ...

  “应用创新、打造新生态”,ICDIA 2024启航!各大研究机构觉得全球半导体市场在2023年到达周期性低点后,今年将整体出现复苏的趋势。Gartn ...

  随着生活水平的提高,人们对电子科技类产品的要求也慢慢变得高,很多电子科技类产品都用上了显示屏,像家电、汽车、医疗等很多产品都配有显示屏,而且这些 ...

  电动机的过载保护指的是在电机承受超过其额定负载时,通过一系列保护的方法保护电动机的安全运行。电动机有多种过载保护方法,其中最常见的方 ...

  变频器是一种电力调节设备,它根据负载需求调整电力频率,以实现对电动机速度的精确控制。在使用变频器的过程中,正确的接线和配线是非常重 ...

  站点相关:嵌入式处理器嵌入式操作系统开发相关FPGA/DSP总线与接口数据处理消费电子工业电子汽车电子其他技术存储技术综合资讯论坛电子百科